chloro and bromo analogs, we regarded the linear chain as consisting of alternately arranged tetragonalbipyramidal $\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{I}_{2}\right]^{2+}$ and square-planar $\left[\mathrm{Pt}(\mathrm{en})_{2}\right]^{2+}$ units, where 2.704 (11), 2.726 (9) \AA and 3.115 (11), 3.039 (9) \AA are assigned as the $\mathrm{Pt}^{\mathrm{IV}}-\mathrm{I}$ and $\mathrm{Pt}^{\mathrm{II}}-\mathrm{I}$ distances respectively. The thermal parameters of $\mathrm{N}(1)$, $N(2), C(1)$ and $C(2)$ are normal. Therefore, the dimensions and conformation of the $\mathrm{Pt}^{\mathrm{II}}$ and $\mathrm{Pt}^{\mathrm{IV}}$ species should be the same except for the $\mathrm{Pt}-\mathrm{I}$ bond; this is because such differences between the $\mathrm{Pt}^{1 \mathrm{I}}$ and $\mathrm{Pt}^{\mathrm{IV}}$ species would result in high thermal parameters in the average subcell structure.

The distances $\mathrm{N}(1)-\mathrm{O}(1), \mathrm{N}(1)-\mathrm{O}(2), \mathrm{N}(2)-\mathrm{O}(1)$, and $\mathrm{N}(2)-\mathrm{O}(2)$ indicate that there are hydrogen bonds between these atoms. These hydrogen bonds should contribute to the formation of the infinite chain, as was observed for the chloro and bromo analogs.

The ratio of the $\mathrm{Pt}^{\mathrm{IV}}-\mathrm{I}$ and $\mathrm{Pt}^{\mathrm{II}}-\mathrm{I}$ distances is 0.93 , which is much higher than the ratios of the $\mathrm{Pt}^{\mathrm{IV}}-$ halogen and $\mathrm{Pt}^{1 \mathrm{II}}$-halogen distances reported for the bromo ($0.86,0.87$) and chloro (0.76) analogs (Ma-

Fig. 2. An illustration of the disorder along \mathbf{b}.
tsumoto, Yamashita \& Kida, 1978b). The above results imply that the difference in the oxidation states between $\mathrm{Pt}^{\mathrm{IV}}$ and $\mathrm{Pt}^{\mathrm{II}}$ atoms is reduced in the order: chloro, bromo and iodo analogs.

Recently, we evaluated the quantitative values of the oxidation states of these complexes from the X-ray photoelectron spectra (ESCA), and confirmed that the ESCA results were consistent with the above structural results (Yamashita, Matsumoto \& Kida, 1978).

The authors wish to express their thanks to Dr T. Itoh of Rikagaku Kenkyusho for allowing them to use the absorption-correction program $A B S-10$.

References

Brosset, C. (1948). Ark. Kemi Mineral. Geol. 25A, 1-14.
Brown, K. L. \& Hall, D. (1976). Acta Cryst. B32, 279281.

Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 180182.

Craven, B. M. \& Hall, D. (1961). Acta Cryst. 14, 475480.

Craven, B. M. \& Hall, D. (1966). Acta Cryst. 21, 177180.

Hall, D. \& Williams, P. P. (1958). Acta Cryst. 11, 624626.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Matsumoto, N., Yamashita, M. \& Kida, S. (1978a). Bull. Chem. Soc. Jpn, 51, 2334-2337.
Matsumoto, N., Yamashita, M. \& Kida, S. (1978b). Bull. Chem. Soc. Jpn, 51, 3514-3518.
Ryan, T. D. \& Rundle, R. E. (1961). J. Am. Chem. Soc. 83, 2814-2816.
Sakurai, T., Iwasakı, H., Watanabe, Y., Kobayashi, K., Bando, Y. \& Nakamichi, Y. (1974). Rikagaku Kenkyusho Hokoku, 50, 75-91 (in Japanese).
Wallen, J., Brosset, C. \& Vannerberg, N.-G. (1962). Ark. Kemi, A 18, 541-551.
Yamashita, M., Matsumoto, N. \& Kida, S. (1978). Inorg. Chim. Acta, 31, L381-L382.

Acta Cryst. (1979). B35, 1460-1463

Tetrakis(N, N^{\prime}-diethylthiourea)cobalt(II) Diperchlorate

By T. G. Fawcett, E. E. Fehskens, J. A. Potenza and H. J. Schugar
Department of Chemistry, Rutgers University, New Brunswick, New Jersey 08903, USA
and R. A. Lalancette
Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA

(Received 3 January 1979; accepted 13 February 1979)

$$
\begin{array}{r}
\text { Abstract. }\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}, \mathrm{C}_{20} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{CoN}_{8}- \\
\mathrm{O}_{8} \mathrm{~S}_{4}, \text { orthorhombic, Pbcc, } a=19.447(4), b= \\
13.939(4), c=14.360(5) \AA, Z=4, D_{o}=1.36(1), D_{c} \\
0567-7408 / 79 / 061460-04 \$ 01.00
\end{array}
$$

$=1.342 \mathrm{Mg} \mathrm{m}^{-3}$. The structure contains discrete $\mathrm{Co}\left[\mathrm{S}=\mathrm{C}\left(\mathrm{NHCH}_{2} \mathrm{CH}_{3}\right)_{2}\right]_{4}^{2+}$ ions with point symmetry 2. Each Co atom is ligated by four S atoms having a (c) 1979 International Union of Crystallography
flattened-tetrahedral arrangement; dihedral angles involving the $\mathrm{S}-\mathrm{Co}-\mathrm{S}$ planes are 78.2 (2), 78.7 (2) and $90.5(3)^{\circ}$. The $\mathrm{S}-\mathrm{Co}-\mathrm{S}$ angles within the coordination polyhedron range from 98.3 (2) to $115 \cdot 7$ (2) ${ }^{\circ}$. Both crystallographically unique Co-S distances [2.295 (6), $2 \cdot 293$ (5) $\AA]$ are equivalent. The perchlorate group and one ethylamino group are disordered.

Introduction. We have been interested in characterizing model M^{II} mercaptide ($M=\mathrm{Cu}, \mathrm{Co}, \mathrm{Zn}$) complexes to understand better the spectral and structural features of analogous chromophores present in various proteins. Because mercaptide complexes of Co^{11} tend to be oxidatively and photolytically unstable, it is difficult to obtain resonance Raman spectra of the $\mathrm{Co}^{\mathrm{II}}$-sulfur modes. Resonance-enhanced modes of this type are potentially useful structural probes for $\mathrm{Co}^{\mathrm{II}}$ substituted protein sites. $\mathrm{Co}^{\text {II }}$ complexes of thioureas are much more stable, and we have been able to investigate them thoroughly (Salama, Schugar \& Spiro, 1979). While thioureas and mercaptides differ chemically, they do have similar optical electronegativities. Approximately tetrahedral Co^{11} complexes of thioureas exhibit ligand-field and charge-transfer spectra (Piovesana \& Furlani, 1968) similar to those observed for structurally analogous Co^{11} mercaptide complexes (Mastropaolo, Thich, Potenza \& Schugar, 1977). To facilitate our spectroscopic studies, we chose to synthesize and characterize structurally a tetrakis $\mathrm{Co}^{\mathrm{II}}$ thiourea complex whose gegenion (ClO_{4}^{-}) spectrally is transparent over the visible and near ultraviolet region.

Blue prisms of the title complex crystallized from cooled isopropyl alcohol solutions which contained a 1:4 molar ratio of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and the ligand. A single crystal of dimensions $0.25 \times 0.23 \times 0.21 \mathrm{~mm}$, mounted on a glass fiber, was used. Weissenberg photographs showed systematic absences for $0 k l, k=2 n+$ $1 ; h 0 l, l=2 n+1$; and $h k 0, h+k=2 n+1$, along with mmm reciprocal-lattice symmetry, indicating space group Pbcn. Assuming four molecules per cell, the observed (gradient) and calculated densities agreed well. Data were collected at $296 \pm 1 \mathrm{~K}$ with a Syntex $P 2_{1}$ automated diffractometer ($\theta-2 \theta$ scan) using graphite-monochromated Mo $K \alpha$ radiation ($\lambda=$ $0.71069 \AA$). A total of 810 reflections ($4<2 \theta<42^{\circ}$) having $F^{2}>3 \sigma\left(F^{2}\right)$ were considered observed, corrected for Lp and absorption effects ($\mu=0.847 \mathrm{~mm}^{-1}$ for Mo $K \alpha$ radiation), and used in the refinement. The relatively small number of 3σ data points is attributable in part to thermal motion in the crystal; the Wilson plot temperature factor was $B=4.8 \AA^{2}$. Three standard reflections, measured at 47 reflection intervals, remained constant to $\pm 2 \%$ throughout the datacollection period.

The structure was solved by direct methods and refined by full-matrix least-squares techniques using
programs described previously (Fawcett, Ushay, Rose, Lalancette, Potenza \& Schugar, 1979). Neutral-atom scattering factors and anomalous-dispersion corrections for Co, S, and Cl were obtained from International Tables for X-ray Crystallography (1974). An E map calculated using 300 phases from the starting set having the highest combined figure of merit revealed all non-hydrogen atoms except the perchlorate O atoms and three atoms from an ethylamino group [$\mathrm{N}(1), \mathrm{C}(2)$ and $\mathrm{C}(3)]$.

A difference Fourier map revealed a large number of small peaks surrounding the Cl atom as well as several broad, overlapping peaks in the vicinity of $\mathrm{N}(1)$, suggesting disorder at these sites. From electron densities in the difference map, 12 peaks in the vicinity of the Cl atom were located. These peaks were consistent with three sets of perchlorate O atoms with approximate occupancies of 45,30 and 25%.* Several methods for refining the perchlorate disorder were attempted. With the Cl atom at one site and fixed O occupancies, refinement yielded $R_{F}=\sum| | F_{o}\left|-\left|F_{c}\right|\right| /$ $\sum\left|F_{o}\right|=0.076$ and $R_{w F}=\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{o} / \sum w F_{o}^{2}\right]^{1 / 2}$ $=0.089$; however, convergence was difficult to obtain and several O temperature factors were as large as 40 \AA^{2}. Bond distances and angles within the perchlorate group also showed an unusually large span. Rigid-body refinement using fixed $\mathrm{Cl}-\mathrm{O}$ distances ($1.41 \AA$) and tetrahedral $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$ angles gave values of $R_{F}=0.109$ and $R_{w F}=0.114$ at convergence; for this refinement, the Cl atom was allowed to occupy three sites, and both Cl and O occupancies were refined. Finally, a model in which the Cl atom was allowed to occupy three sites gave $R_{F}=0.073$ and $R_{w F}=0.086$ when all coordinate and temperature factors as well as Cl and O occupancies were allowed to vary. Using Hamilton's (1965) Rfactor test, the decrease in $R_{w F}$ for the third model is significant. For this model, which we report, $\mathrm{Cl}-\mathrm{O}$ distances ranged from 1.25 (6) to 1.67 (9) \AA with an average of $1.42 \AA$ while the $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$ angles ranged from 90 (3) to $127(4)^{\circ}$ with an average of 109°. These averages agree well with values reported for perchlorate groups where disorder was not a problem (Ou, Miskowski, Lalancette, Potenza \& Schugar, 1976) while the ranges are approximately the same as those found for other structures with disordered perchlorate groups (Jungst \& Stucky, 1974; Curtis, McCormick \& Waters, 1973).

Several attempts to model the disordered ethylamino group, by allowing it to occupy either two or three sites, proved unrewarding. The best model appeared to be one with occupancy of one site. This gave relatively large temperature factors and unusual bond distances about C(2). Similar difficulties with

[^0]alkyl groups have been encountered previously (Potenza, Johnson \& San Filippo, 1976).

H atom positions were calculated by methods described previously (Fawcett, Ou, Potenza \& Schugar, 1978). Before anisotropic refinement, they were assigned fixed isotropic temperature factors equal to $B_{N}+1$, where B_{N} is the temperature factor of the atom bonded to H . Refinement of all non-hydrogen coordinates, using anisotropic thermal parameters for $\mathrm{Co}, \mathrm{Cl}, \mathrm{S}$ and N atoms, gave final values of $R_{F}=0.073$ and $R_{w F}=0.086$. For the final cycle, all parameter changes for the ordered atoms were less than $0 \cdot 1 \sigma$, where σ is the e.s.d. obtained from the inverse matrix. A final difference map showed a general background of ± 0.5 e \AA^{-3} and revealed no significant features; the largest positive peak was smaller than the largest negative peak, indicating that the model chosen gives a good account of the electron density in the cell. Atom

Table 1. Final atomic coordinates
Estimated standard deviations, obtained from the least-squares refinement, are given in parentheses.

	x	y	
Co	${ }^{\frac{1}{2}}$	$0.3572(2)$	$\frac{1}{4}$
$\mathrm{~S}(1)$	$0.4255(4)$	$0.2691(4)$	$0.1603(3)$
$\mathrm{S}(2)$	$0.4507(3)$	$0.4459(3)$	$0.3666(3)$
$\mathrm{Cl}(47)^{*}$	$0.1940(8)$	$0.3631(7)$	$0.306(1)$
$\mathrm{Cl}(30)$	$0.195(1)$	$0.357(2)$	$0.295(1)$
$\mathrm{Cl}(23)$	$0.202(2)$	$0.362(2)$	$0.300(2)$
$\mathrm{N}(1)$	$0.380(1)$	$0.097(1)$	$0.210(1)$
$\mathrm{N}(2)$	$0.3688(9)$	$0.212(1)$	$0.319(1)$
$\mathrm{N}(3)$	$0.3686(7)$	$0.508(1)$	$0.230(1)$
$\mathrm{N}(4)$	$0.3965(8)$	$0.619(1)$	$0.341(1)$
$\mathrm{C}(1)$	$0.393(1)$	$0.186(1)$	$0.236(1)$
$\mathrm{C}(2)$	$0.393(2)$	$0.060(2)$	$0.098(2)$
$\mathrm{C}(3)$	$0.452(2)$	$0.021(3)$	$0.118(3)$
$\mathrm{C}(4)$	$0.340(1)$	$0.150(1)$	$0.390(1)$
$\mathrm{C}(5)$	$0.330(1)$	$0.200(1)$	$0.480(1)$
$\mathrm{C}(6)$	$0.4026(9)$	$0.529(1)$	$0.308(1)$
$\mathrm{C}(7)$	$0.329(1)$	$0.573(1)$	$0.172(1)$
$\mathrm{C}(8)$	$0.316(1)$	$0.525(1)$	$0.079(1)$
$\mathrm{C}(9)$	$0.430(1)$	$0.653(1)$	$0.424(1)$
$\mathrm{C}(10)$	$0.487(1)$	$0.716(2)$	$0.405(2)$
$\mathrm{O}(1) \dagger$	$0.201(1)$	$0.272(2)$	$0.318(2)$
$\mathrm{O}(2)$	$0.198(4)$	$0.411(6)$	$0.224(5)$
$\mathrm{O}(3)$	$0.132(2)$	$0.411(2)$	$0.326(2)$
$\mathrm{O}(4)$	$0.255(2)$	$0.399(3)$	$0.349(2)$
$\mathrm{O}(5)$	$0.274(9)$	$0.374(12)$	$0.346(12)$
$\mathrm{O}(6)$	$0.156(4)$	$0.386(6)$	$0.395(6)$
$\mathrm{O}(7)$	$0.185(3)$	$0.280(4)$	$0.249(4)$
$\mathrm{O}(8)$	$0.199(3)$	$0.433(4)$	$0.246(4)$
$\mathrm{O}(9)$	$0.205(3)$	$0.447(8)$	$0.312(5)$
$\mathrm{O}(10)$	$0.197(2)$	$0.307(4)$	$0.387(6)$
$\mathrm{O}(11)$	$0.252(4)$	$0.330(4)$	$0.232(4)$
$\mathrm{O}(12)$	$0.138(3)$	$0.331(3)$	$0.236(3)$

[^1]parameters* are given in Table 1. A view of the structure is given in Fig. 1.

Discussion. The structure contains discrete $\mathrm{Co} / \mathrm{SC}$ $\left.\left(\mathrm{NHCH}_{2} \mathrm{CH}_{3}\right)_{2}\right]_{4}^{2+}$ ions with point symmetry 2 . The S_{4} ligand donor set has a flattened-tetrahedral arrangement as evidenced by the $\mathrm{S}(1)-\mathrm{Co}-\mathrm{S}\left(1^{\prime}\right) / \mathrm{S}(2)-\mathrm{Co}-$ $\mathrm{S}\left(2^{\prime}\right), \mathrm{S}(1)-\mathrm{Co}-\mathrm{S}(2) / \mathrm{S}\left(1^{\prime}\right)-\mathrm{Co}-\mathrm{S}\left(2^{\prime}\right)$ and $\mathrm{S}(1)-\mathrm{Co}-$ $\mathrm{S}\left(2^{\prime}\right) / \mathbf{S}\left(1^{\prime}\right)-\mathrm{Co}-\mathrm{S}(2)$ dihedral angles of $78.2(2)$, 78.7 (2), and $90.5(3)^{\circ}$, respectively. Bond angles within the CoS_{4} unit span the range 98.3 (2) to 115.7 (2) ${ }^{\circ}$. Both Co-S distances [2.295 (6), 2.293 (5) \AA] are equivalent. Observed bond angles as well as metal-ligand and ligand bond distances of the title complex closely correspond to those reported for $\mathrm{Co}[\mathrm{SC}$ $\left(\mathrm{NHCH}_{2} \mathrm{CH}_{3}\right)_{2} \mathrm{l}_{2} \mathrm{Cl}_{2}$ (Bonamico, Dessy, Fares \& Scaramuzza, 1973) in which Co is ligated by two S and two Cl atoms. Morover, the observed $\mathrm{Co}-\mathrm{S}$ bond distances correspond closely to the $\mathrm{Co}-\mathrm{S}$ (mercaptide) bond distance of 2.272 (2) \AA reported for Co [SC$\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right]_{2}$ (Mastropaolo et al., 1977). This result is in harmony with the electronic-structural similarity between $\mathrm{Co}^{\mathrm{II}}-$ mercaptide and Co^{11}-thiourea chromophores noted above.

Fig. 1. View of the title complex showing the atom-numbering scheme. The ClO_{4}^{-}group shown is that having the highest (47%) occupancy.

Of particular interest to our resonance Raman studies is the nature of the $\mathrm{Co}^{\mathrm{II}}-\mathrm{S}$ bonding in the title complex. Within experimental error, one thiourea group is planar while the second deviates from planarity. Atom displacements (in \AA) from the least-squares planes are $-0.017(6),-0.02(2),-0.02(2)$ and 0.06 (2), respectively, for the $\mathrm{S}(1), \mathrm{N}(1), \mathrm{N}(2), \mathrm{C}(1)$ unit and 0.002 (5), $0.00(2), 0.00(2)$ and -0.01 (2), respectively, for the $\mathrm{S}(2), \mathrm{N}(3), \mathrm{N}(4), \mathrm{C}(6)$ unit. Bonding of $\mathrm{Co}^{\text {II }}$ to a thiourea can involve an $s p^{2}$ orbital localized on the S atom as well as a delocalized π symmetry molecular orbital. Bonding of the former type is characterized by a $\mathrm{Co}-\mathrm{S}-\mathrm{C} / \mathrm{S}-\mathrm{C}-\mathrm{N}$ dihedral angle in the range 17 to 34°; bonding of the latter type was indicated by a considerably larger dihedral angle (75.8品) reported for $\mathrm{Co}\left[\mathrm{SC}\left(\mathrm{NH}_{2}\right)_{2}\right]_{4}\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Spofford, Boldrini, Amma, Carfagno \& Gentile, 1970). While $s p^{2}$-type bond angles for thiourea complexes normally span the range $108-116^{\circ}$, the $\mathrm{Co}-\mathrm{S}-\mathrm{C}$ angle associated with the large dihedral angle above was $103 \cdot 0^{\circ}$. The four $\mathrm{Co}-\mathrm{S}-\mathrm{C} / \mathrm{S}-\mathrm{C}-\mathrm{N}$ angles in the title complex range from 36 to 48° while the two unique $\mathrm{Co}-\mathrm{S}-\mathrm{C}$ angles are 104.1 (7) and $103 \cdot 5$ (6) ${ }^{\circ}$. Thus, $\mathrm{Co}-\mathrm{S}$ bonding in the title complex appears to lie at the boundary where 'pure' $s p^{2}$ bonding becomes mixed with π-symmetry Co -thiourea interactions.

The ClO_{4}^{-}ions appear to be loosely held in lattice holes by Coulombic forces and weak hydrogen bonds to neighboring amine groups. All O atoms involved in hydrogen bonding have relatively small temperature factors. Conversely, those O atoms far removed from the N atoms or which make poor hydrogen-bonding angles have large temperature factors.

We thank the National Institutes of Health (Grant AM-16412 to HJS) for financial support and the Center for Computer and Information Services, Rutgers University, for providing computer time.

References

Bonamico, M., Dessy, G., Fares, V. \& Scaramuzza, L. (1973). J. Chem. Soc. Dalton Trans. pp. 876-878.

Curtis, N. F., McCormick, I. R. N. \& Waters, T. N. (1973). J. Chem. Soc. Dalton Trans. pp. 1537-1548.

Fawcett, T. G., Ou, C. C., Potenza, J. A. \& Schugar, H. J. (1978). J. Am. Chem. Soc. 100, 2058-2062.

Fawcett, T. G., Ushay, M., Rose, J. P., Lalancette, R. A., Potenza, J. A. \& Schugar, H. J. (1979). Inorg. Chem. 18, 327-332.
Hamilton. W. C. (1965). Acta Cryst. 18, 502-5 10.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Jungst, R. \& Stucky, G. (1974). Inorg. Chem. 13, 24042408.

Mastropaolo, D., Thich, J. A., Potenza, J. A. \& Schugar, H. J. (1977). J. Am. Chem. Soc. 99, 424-429.
Ou, C. C., Miskowski, V. M., Lalancette, R. A., Potenza, J. A. \& Schugar, H. J. (1976). Inorg. Chem. 15, 3157-3161.
Piovesana, O. \& Furlani, C. (1968). J. Inorg. Nucl. Chem. 30, 1249-1256.
Potenza, J. A., Johnson, R. J. \& San Filippo, J. Jr (1976). Inorg. Chem. 15, 2215-22 18.

Salama, S., Schugar, H. J. \& Spiro, T. G. (1979). Inorg. Chem. 18, 104-107.
Spofford, W. A. III, Boldrini, P., Amma, E. L., Carfagno, P. \& Gentile, P. S. (1970). Chem. Commun. pp. 40-41.

Structure of cis-Di- μ-methoxo-bis($\boldsymbol{\eta}^{5}$-cyclopentadienylnitrosylchromium)

By Andrew D. U. Hardy and George A. Sim
Chemistry Department, University of Glasgow, Glasgow G12 8QQ, Scotland

(Received 15 February 1979; accepted 6 March 1979)

Abstract. $\quad\left[\mathrm{Cr}_{2}\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{NO})_{2}\right], \quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cr}_{2}-$ $\mathrm{N}_{2} \mathrm{O}_{4}$, orthorhombic, Pnma, $a=12.810$ (7), $b=$ 17.575 (6), $c=6.431$ (3) $\AA, Z=4, V=1447.8 \AA^{3}, M_{r}$ $=356.2, D_{c}=1.63 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=728, \mu(\mathrm{Mo} \mathrm{K} \alpha)$ $=1.58 \mathrm{~mm}^{-1}, R=0.068$ for 718 reflections. The molecule has a plane of symmetry passing through the O and C atoms of the bridging methoxo groups. The $\mathrm{Cr}_{2} \mathrm{O}_{2}$ ring is buckled, with the two $\mathrm{Cr}_{2} \mathrm{O}$ planes inclined at 156°. The $\mathrm{Cr}-\mathrm{O}$ lengths are 1.955, 1.960 (6) \AA and the $\mathrm{Cr}-\mathrm{Cr}$ distance is 2.882 (2) \AA.

The $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ angle is $83.0(3)^{\circ}$ and the $\mathrm{Cr}-\mathrm{O}-\mathrm{Cr}$ angles are $94.6(4), 95.0(3)^{\circ}$.

Introduction. The four-membered ring $M_{2} X_{2}$ is a common feature of binuclear metal complexes. The preparation of the complexes $\left[\left(\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cr}(\mathrm{NO}) X\right]_{2}$, where $X=\mathrm{SPh}, \mathrm{NMe}_{2}$, etc. (Ahmad, Bruce \& Knox, 1966) made available an opportunity to examine the effect on the ring geometry of changes in the bridging ligand X, and the molecular structures of trans-[$\left(\eta^{5}-\right.$

[^0]: * At an equivalent point of refinement, isotropic convergence, models with zero, 4,8 , and 120 atoms with appropriate atom multipliers gave R_{F} values of $0.219,0.189,0.196$ and 0.163 , respectively.

[^1]: * Atom numbers for the Cl atoms correspond to per cent occupancy at that site.
 \dagger Occupancy factors for the O atoms are as follows: $O(1)-O(4)$, $0.47 ; O(5)-O(8), 0.23 ; O(9)-O(12), 0.30$. Thus, atoms $O(1)-O(4)$ are bound to $\mathrm{Cl}(47)$, etc.

